Duocel® Reticulated Vitreous Carbon (RVC) Foam

Home/Materials/Duocel® Reticulated Vitreous Carbon (RVC) Foam
Duocel® Reticulated Vitreous Carbon (RVC) Foam 2017-10-12T08:19:49+00:00

Why is Duocel® Reticulated Vitreous Carbon (RVC) foam so special?

The matrix of cells and ligaments is completely repeatable, regular, and uniform throughout the entirety of the material. Duocel® Reticulated Vitreous Carbon is a rigid, highly porous and permeable structure and has a controlled density of carbon per unit volume.

Physical Characteristics of Duocel® Reticulated Vitreous Carbon (RVC) Foam* (3% Nominal Density)

Compression Strength15-75 psi (0.10-0.52 MPa)
Tensile Strength*25-50 psi (0.17-0.34 MPa)
Shear Strength*4.4x103 psi(30.3 Mpa)
Mohs Hardness6-7 Mohs
Modulus of Elasticity (Tension)*14.6 × 103 psi(101.84 MPa)
Shear Modulus4.4 × 103 psi (30.3 MPa)
Vickers Pyramid Number35 HV
Specific Heat.3 BTU/lb °F(1.26 J/g °C)
Bulk Thermal Conductivity0.021 - 0.029 BTU/ft ·hr·°F (0.033 - 0.050 W/m °C)
Coefficient of Thermal Expansion
(0-100°C) 1.2 × 10-6 in/in°F (2.2 × 10-6 m/m°C)
(100-1000°C) 1.8 × 10-6 in/in°F (3.2 × 10-6 m/m°C)
Bulk Resistivity12.7 × 10-2 ohm · in (32.3 × 10-2 ohm · cm)
Temperature Limitations
In air 600°F (315°C)
Inert environment 6330°F (3499°C)

Aluminum has great thermal conductivity for its cost and weight. Because of the high surface area of Duocel® foam, heat transfer to/from fluids flowing through the foam is greatly accelerated over solid aluminum and aluminum fins.

Duocel® aluminum foam is also ideal for use with phase change materials (PCM) because of the large amount of surface area, which increases coupling to PCM.

Please visit our thermal conductivity page in the technical data section for a more in depth explanation of how materials and properties effects the thermal conductivity of Duocel® foam.

When a load is applied to a foam structure, it will initially yield elastically. However, at approximately 4-6% of strain, depending on the sample size, the foam structure will begin to buckle and collapse continuously at a relatively constant stress. Depending upon the initial relative density of the foam, this constant collapse will proceed to approximately 50-70% of strain. At that point, the stress / strain curve will begin to rise as the compressed foam enters the “densification” phase.

The point in the stress / strain curve where it transitions from the elastic to plastic deformation phase defines the “crush strength” of the foam. This is an important mechanical parameter as it is obviously essential to remain below that level for any structure that is being designed to maintain its shape under design load

Please visit our energy absorption page in the technical data section for a more in depth explanation of how materials and properties effects the crush strength of Duocel® foam.

Duocel® Reticulated Vitreous Carbon (RVC) is an excellent material for use as a porous electrode. The structure provides both low electrical and low fluid flow resistance. Large current distribution areas are possible due to the enormous amount of surface area of the foam.

Please visit our electrical conductivity page in the technical data section for a more in depth explanation of how materials and properties effects the electrical conductivity of Duocel® foam.

Duocel® Reticulated Vitreous Carbon ( RVC) is made in a 3% relative density (of it’s parent material), or it has 97% void volume. The resulting foam structure is extremely lightweight.

Duocel® Reticulated Vitreous Carbon ( RVC) is uniquely strong at elevated temperatures. It also has a high scratch resistance at 6-7 mohs.

Duocel® Reticulated Vitreous Carbon (RVC) is composed of one of the most chemically inert forms of Carbon. Duocel® RVC is highly resistant to intercalation by materials which disintegrate graphite.

Duocel® RVC is inert to a wide rage of very reactive acids, bases, and organic solvents. At high temperatures it will form carbides, but is inert to non-carbide forming metals

Duocel® RVC is manufactured at 3% relative density and is made in a billet size of 6” x 12” x 24”. ERG does have the capability to create larger billet sizes on a custom basis.

The cost for Duocel® RVC is about $1.50 per cubic inch. This is the cost before any fabrication or machining is done to the material.

ERG does not sell foam as a raw bulk material, only as finished end item components.

Information Request Form